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Anomalous transport and quantum-classical correspondence
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We present evidence that anomalous transport in the classical standard map results in strong enhancement of
fluctuations in the localization length of quasienergy states in the corresponding quantum dynamics. This
generic effect occurs even far from the semiclassical limit and reflects the interplay of local and global
quantum suppression mechanisms of classically chaotic dynamics. Possible experimental scenarios are also
discussed[S1063-651X99)03006-§

PACS numbdis): 05.45~a, 03.65.Sq, 05.66:k

It is generally accepted that quantum mechanics supef K where the effective diffusion constafaver some timg
presses chaotic classical motion. Numerous studies hawan be different fromD, by many orders of magnitude.
identified mechanisms for suppression which, for our purFigure 1 shows these windows of anomalous diffusion which
poses, fall into two broad classes. One class is exemplifie@ire not very narrow and exhibit substructure in each of the
by “dynamical localization” where quantum eigenstates arepeaks.
localized in a variable such as momentum despite the deter- It was shown that there is no diffusion at all and that the
ministic diffusion seen in the limiting classical dynamjdd. ~ random walk process corresponds tovydike wandering
This effect is analogous to Anderson localization in tight-with a transport exponent given by (p?~t*, where u
binding models[2] and, in one-dimension, the localized >1. u varies withK and has the “normal” valug.=1 only
wave function has a characteristic exponential form. Theat special values df. Superdiffusion occurs for>1 lead-
scale is the localization lengthwhich is related to the clas- ing to anomalous growth in momentum. It was explicitly
sical diffusion constantan important fact for the work re- shown[6] that this could result from an island hierarchy with
ported here. There is also a time scéfe beyond which a peculiar topological structure near “accelerator” modes
quantum and classical dynamics deviate. Despite a few couwhich appear at special valuesiof Near these values, clas-
terexamples, dynamical localization provides a ‘“global” sical trajectories stick to the boundaries of these islands
mechanism for quantum suppression. which leads to flights of arbitrary length. The net result is

The second class can be motivated by the fast deviation aftrong intermittency and superdiffusion.
wave packet dynamics from the classical motion even in the One signature of anomalous transport is constructed from
semiclassical limit. This effect is contained in the logarith-the set of recurrence timgs;}, j=0,1, ..., for aclassical
mic break timer, = In(1/4)/T for the breakdown of quantum- trajectory originating in a region of phase space. The prob-
classical correspondenc8], relative to a characteristic
Lyapunov exponent’ and actionl. However, the quantum
dynamics retains features of the classical dynamics for times L
beyond this estimate. “Scarringl4,5] refers to quantum 200 -
coherences associated with local, unstable and marginally
stable, classical invariant structures. Though many open -
guestions remain, this effect has been numerically and ex-
perimentally observed in a variety of strongly coupled quan- -
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tum systems.

We present evidence of another example of “classical 4 6
persistence” due to anomalous diffusion and accelerator K
modes in chaotic dynamics. There has been considerable ac- -
tivity in the area of anomalous classical transgér8|. Of
particular relevance to the present work is that even in an
established paradigm such as the standard map, described by
On+1=0n+ Pn+1 @nd pps1=py+Ksing,, surprising new 0 T
results were reported. 6 Y 8 9 10 11

In the limit of largeK, the classical standard map dynam-
ics is diffusive in the action variablp with diffusion con- FIG. 1. Diffusion coefficienD for the standard map, normalized
stant (p%)/t=K?/2=Dg. What is also established is that to Dy =K?/2, as a function oK. The deviations from the quasilin-
away from this limit, the diffusion constant exhibits peaks ear prediction span a wide window kfand, as seen from the inset,
with changingK and varies in timd8]. Recent result§6,7]  can be large at select values Kf even far from the bifurcation
with improved precision and detail show that there are valuepoint K=27.
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FIG. 2. Distribution of Poincareycles. The inset clearly dis-
plays the power-law tail of the distribution. t

ability distribution R(t) of Poincare cycles {tj}:{Tj+1 FlG. 3 Variation of(p2>.(normalized to the s.aturation value
_ 7_]_} can now be computed. For “perfect” mixing and nor- D t*) with the number of kicks. Two representative values &f
mal diffusion, R(t) is strictly Poissonian whereas it exhibits °"¢ 1arge (Qa=~0.61803399) and the other small ($C,
powerlike asymptotics for anomalous kinetics. This classical” 0-042340526), are shown fd(=11 (dashed lines and K
characteristic of anomalous transport is illustrated in Fig. 2. 0-90° (solid lineg. Note that the larger value was time-
S - . averaged to remove fluctuations that mask the trends. The inset
and is important for the corresponding quantum dynamics a3 ows a log-log plot(at longer times,~5000 kicks for a
well. . . . —0.042340526,K* = 6.905 (upper curvi, and K=11.0 (lower
We pose seyeral questions, arsing from classical anomas,vg. The corresponding slopes are 0.&blid line) and 0.06
lous diffusion, in the corresponding quantum dynamics ?'f(dashed ling respectively.
the standard map, or, equivalently, the “delta-kicked rotor
H=p?/2+K com=,8(t—n). The scale lengtls is related to  fusion coefficient is actually below, (seen in Fig. 1 %
the classical diffusion constant and even follows the varia=2sa, where several irrational values af in the range
tions in D with K [11]. Thus, we anticipate that strong en- 0.04—1 were considered. In the quasilinear limit, the quan-
hancement irD resulting from anomalous diffusion should tum diffusion is expected to saturatetat= aDq|/i’L2 where
also be reflected ig. The nature of dynamical localization in « was numerically shown to be 1f2,11]. £ measured in
these special windows is a related question. Further, as smalhgular momentum quanta is=t*. Figure 3 shows
local structures in the classical phase space lead to the supép?)/(Dt*) as a function of time for two representative
diffusion, these issues directly pertain to the interplay of lo-values ofa. For largea, both values ofK result in strong
cal and global aspects of quantum suppression. This idea iaturation withk =11 having a higher saturation value than
reinforced by the enhanced diffusion that ought to be visibleK* =6.905. However, with decreasiragthe enhanced diffu-
in the quantum dynamics even far from the semiclassicagion for K* =6.905 becomes evident and there is a slow-
limit, where scarring is significant. Other authors have condown in growth in lieu of saturatiofover the time consid-
sidered quantum dynamics in the presence of anomalousred. By contrast,K=11 appears to saturate at a value
transport[9,10] though in a different regime. We focus on which is about an order of magnitude lower. This difference
the situation where the quantization scale/2 is much is considerably larger than estimates based on quasilinear
larger than the size of the islands. Thus, any coherences agnalysis. The inset in Fig. 2 verifies the existence of power-
sociated with the islands would be due to “scarred” quan-law behavior in{p?) for longer timesat K* as compared
tum states. with saturation akK=11. Note that the slope points to sub-
Consider the evolution ofp?) with time t (measured as diffusive rather than to superdiffusive growth for which we
the number of kicksin the quantum dynamics for two val- have no clear explanation at present.
ues of the parametét. The computation uses fast-Fourier A stronger signature appears on considering the variation
transforms to evolve a plane wave initial state under repeategf |ocalization lengthé with K. It was shown[11] that &

application of the single-kick evolution operator tracks the variations in the classical diffusion coefficiént
_ when plotted with respect t&,=K sin(:/2)/(#/2), an im-
U=exp( —ip?/2h)exd —iK cogq)/4]. (1) portant correction at largér. Figure 4 shows the variation in

¢, normalized to the quasilinear estimate, with respeét o
The expectation values are then computed from the time¢ is obtained by fitting an exponential to the time-dependent
evolved wave functionK ,=6.908745- - is a critical value  wave function for long times. The peaks in the inset coincide
[6] in a wide parametric window dominated by anomalouswith the classical accelerator modesat 27 and 47 andé
transport. We illustrate this regime by considerikg computed at different times reflect the same features. The
=6.905 and contrast it witk=11, where the effective dif- detailed scan displays a reasonable correspondence with the
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FIG. 4. Oscillations in the localization lengthnormalized to

the quasilinear estimate as a function Kf,. a~0.131267463 L L L
which makes the corrections to the classical stochasticity paramete
K significant. The inset shows peaks associated with the accelerato 4

modes while the main figure zooms in on the region considered in g5 6. Participation ratio as a function i, . Time averages of

Fig. 1. The inset also showiscomputed after 3000 kickpoints as e autocorrelation function over 10@@ints and 600@ine) kicks
well as 900Q(line) kicks. Note that the wave function averaged over 5.0 showna~0.131267463.

600 kicks is used to determirge

the characteristic line shape is strongly nonexponential for
results shown in Fig. 1, despite being far from the semiclask ; in the neighborhood of the peaks. The contrast with the
sical limit. It should be noted that the hlgheSt value occurs a&|ear|y exponentia| line Shape shown (bD is Str|k|ng The
Kq~K. defined earlier. central region in(a) also displays curvature and an exponen-
We now consider the localized wave function when thetjg| fit yields a ¢ which is considerably larger than the qua-
classical transport is predominantly anomalous. Figure %jjinear prediction. However, in casb), the computedt is
shows the evolved momentum distribution averaged oveyye|| approximated by the quasilinear estimate. Moving away
600 kicks. Panela) corresponds t&, at a peak in Fig. 4 from the peak ink, decreases the prominence of steul-
while (b) sits in the valley. Localization does occur though dersin the line shape. The shoulders develop over a time
(which depends ofi) which is consistent with the crossover
0 time from exponential to power-law behavior in Fig. 1.
Arguments for deviations of the localization length from
the simple estimates proceed from the long-time averaged
momentum distribution(f ,) == | #ym(Ng) |?| ¥m(N)|?, start-
ing from a plane wave = ng initial condition. ¢,,(n) is the
plane wave representation of the eigenfunction with quasien-
ergy on,. The analysis of localization assumes that all
quasienergy states are exponentially localized and that the
fluctuations in¢ are small. If this were true in the case of
anomalous transport, the oscillations in Fig. 4 should directly
correlate with the number of quasienergy states participating
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(b) in the dynamics. To address this view, we computed the
participation ratioP, from the time averaged autocorrelation
-10 - function
- 1 2
20l P, = lim Z(T)ly(0)P. @

T—oo

| | | As seen from Fig. 6, the only correlation with Fig. 4 occurs
-1500 -1000 -500 0 500 1000 1500 in the valley where the line shape is exponentially localized.
n At the peaks, these results strongly support the idea that
FIG. 5. Line shapes after 6000 kicks starting from a plane wavednomalous transport results in strong fluctuations among
initial condition. (@) corresponds t& ;~K.=6.90845 - - while (b))  the individual quasienergy states. This was verified by con-
corresponds tdK,=10.69. a~0.131267463 and the noise in the structing the “entire” spectrum obl under conditions nec-
line shapes was reduced by averaging over 600 kicks. essary for dynamical localization. The average valué€t of
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does not reflect the large changedirthough the dispersion probability (not exponentially small Theoretical estimates
A ¢ exhibits large fluctuations. This view is being explored are considerably harder whén>S;.
further at present. The issue of fluctuations ié is relevant to an atom optics
Theoretically, the classical flights of arbitrary length re- realization of the kicked pendulufi2]. Here, the localiza-
sult (for the standard mapfrom a hierarchy of boundary tjon properties are similar to those in the quantum standard
layer islands[6]. The island are&,, associated period,  map, though small islands persist in the classical dynamics.
and Lyapunov exponerft, scale asS,=\3Sy, T,=A[To,  As we have illustrated, this could lead to strong fluctuations
and I',,=\[I'y with the generatiom of the island chain. in the localized wave function. More recent experiments
As<1, Aq>1, andAp~1/+. have realized thé-kicked rotor systenfil3] where the mea-
Quantum flights are possible as long%s=# leading to  surement of diffusion, over time scales longer than those
a critical valuen;, =|In#%/S)|/|In \d. The corresponding time predicted earlier, can provide direct evidence of any anoma-
is T,=To(So/%) ¥, whereu=|In\d/IN\{|>1 is a classical lous transport. We note that signatures of anomalous trans-
transport exponerf6]. We generalize the break timg de-  port are similar to those resulting from external noise. This
fined earlier to Inf%)/T,, where| was some characteristic may be especially relevant in the weak noise limit and will
action. The longest time corresponds to the smallgst be considered in detail elsewhere.
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