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Anomalous transport and quantum-classical correspondence

Bala Sundaram1 and G. M. Zaslavsky2
1Department of Mathematics, CSI-CUNY, Staten Island, New York 10314

2Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
and Department of Physics, New York University, 2-4 Washington Place, New York, New York 10003

~Received 25 February 1998; revised manuscript received 3 March 1999!

We present evidence that anomalous transport in the classical standard map results in strong enhancement of
fluctuations in the localization length of quasienergy states in the corresponding quantum dynamics. This
generic effect occurs even far from the semiclassical limit and reflects the interplay of local and global
quantum suppression mechanisms of classically chaotic dynamics. Possible experimental scenarios are also
discussed.@S1063-651X~99!03006-8#

PACS number~s!: 05.45.2a, 03.65.Sq, 05.60.2k
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It is generally accepted that quantum mechanics s
presses chaotic classical motion. Numerous studies h
identified mechanisms for suppression which, for our p
poses, fall into two broad classes. One class is exempl
by ‘‘dynamical localization’’ where quantum eigenstates a
localized in a variable such as momentum despite the de
ministic diffusion seen in the limiting classical dynamics@1#.
This effect is analogous to Anderson localization in tig
binding models@2# and, in one-dimension, the localize
wave function has a characteristic exponential form. T
scale is the localization lengthj which is related to the clas
sical diffusion constant, an important fact for the work re
ported here. There is also a time scalet* beyond which
quantum and classical dynamics deviate. Despite a few co
terexamples, dynamical localization provides a ‘‘globa
mechanism for quantum suppression.

The second class can be motivated by the fast deviatio
wave packet dynamics from the classical motion even in
semiclassical limit. This effect is contained in the logarit
mic break timet\5 ln(I/\)/G for the breakdown of quantum
classical correspondence@3#, relative to a characteristic
Lyapunov exponentG and actionI. However, the quantum
dynamics retains features of the classical dynamics for tim
beyond this estimate. ‘‘Scarring’’@4,5# refers to quantum
coherences associated with local, unstable and margin
stable, classical invariant structures. Though many o
questions remain, this effect has been numerically and
perimentally observed in a variety of strongly coupled qu
tum systems.

We present evidence of another example of ‘‘classi
persistence’’ due to anomalous diffusion and accelera
modes in chaotic dynamics. There has been considerabl
tivity in the area of anomalous classical transport@6–8#. Of
particular relevance to the present work is that even in
established paradigm such as the standard map, describ
qn115qn1pn11 and pn115pn1K sinqn , surprising new
results were reported.

In the limit of largeK, the classical standard map dynam
ics is diffusive in the action variablep with diffusion con-
stant ^p2&/t5K2/2[Dql . What is also established is tha
away from this limit, the diffusion constant exhibits pea
with changingK and varies in time@8#. Recent results@6,7#
with improved precision and detail show that there are val
PRE 591063-651X/99/59~6!/7231~4!/$15.00
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of K where the effective diffusion constant~over some time!
can be different fromDql by many orders of magnitude
Figure 1 shows these windows of anomalous diffusion wh
are not very narrow and exhibit substructure in each of
peaks.

It was shown that there is no diffusion at all and that t
random walk process corresponds to Le´vy-like wandering
with a transport exponentm given by ^p2&'tm, where m
.1. m varies withK and has the ‘‘normal’’ valuem51 only
at special values ofK. Superdiffusion occurs form.1 lead-
ing to anomalous growth in momentum. It was explicit
shown@6# that this could result from an island hierarchy wi
a peculiar topological structure near ‘‘accelerator’’ mod
which appear at special values ofK. Near these values, clas
sical trajectories stick to the boundaries of these isla
which leads to flights of arbitrary length. The net result
strong intermittency and superdiffusion.

One signature of anomalous transport is constructed f
the set of recurrence times$t j%, j 50,1, . . . , for aclassical
trajectory originating in a region of phase space. The pr

FIG. 1. Diffusion coefficientD for the standard map, normalize
to Dql5K2/2, as a function ofK. The deviations from the quasilin
ear prediction span a wide window ofK and, as seen from the inse
can be large at select values ofK, even far from the bifurcation
point K52p.
7231 ©1999 The American Physical Society
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7232 PRE 59BRIEF REPORTS
ability distribution R(t) of Poincare´ cycles $t j%5$t j 11
2t j% can now be computed. For ‘‘perfect’’ mixing and no
mal diffusion,R(t) is strictly Poissonian whereas it exhibi
powerlike asymptotics for anomalous kinetics. This class
characteristic of anomalous transport is illustrated in Fig
and is important for the corresponding quantum dynamic
well.

We pose several questions, arising from classical ano
lous diffusion, in the corresponding quantum dynamics
the standard map, or, equivalently, the ‘‘delta-kicked roto
H5p2/21K cosq(nd(t2n). The scale lengthj is related to
the classical diffusion constant and even follows the va
tions in D with K @11#. Thus, we anticipate that strong e
hancement inD resulting from anomalous diffusion shou
also be reflected inj. The nature of dynamical localization i
these special windows is a related question. Further, as s
local structures in the classical phase space lead to the s
diffusion, these issues directly pertain to the interplay of
cal and global aspects of quantum suppression. This ide
reinforced by the enhanced diffusion that ought to be visi
in the quantum dynamics even far from the semiclass
limit, where scarring is significant. Other authors have c
sidered quantum dynamics in the presence of anoma
transport@9,10# though in a different regime. We focus o
the situation where the quantization scale 2p\ is much
larger than the size of the islands. Thus, any coherence
sociated with the islands would be due to ‘‘scarred’’ qua
tum states.

Consider the evolution of̂p2& with time t ~measured as
the number of kicks! in the quantum dynamics for two va
ues of the parameterK. The computation uses fast-Fouri
transforms to evolve a plane wave initial state under repe
application of the single-kick evolution operator

U5exp~2 ip2/2\!exp@2 iK cos~q!/\#. ~1!

The expectation values are then computed from the ti
evolved wave function.Kc56.908745••• is a critical value
@6# in a wide parametric window dominated by anomalo
transport. We illustrate this regime by consideringK*
56.905 and contrast it withK511, where the effective dif-

FIG. 2. Distribution of Poincare´ cycles. The inset clearly dis
plays the power-law tail of the distribution.
l
,
s

a-
f
’

-

all
er-
-
is

e
al
-
us

as-
-

ed

e-

s

fusion coefficient is actually belowDql ~seen in Fig. 1!. \
52pa, where several irrational values ofa in the range
0.0421 were considered. In the quasilinear limit, the qua
tum diffusion is expected to saturate att* 5aDql /\

2 where
a was numerically shown to be 1/2@1,11#. j measured in
angular momentum quanta is't* . Figure 3 shows
^p2&/(Dqlt* ) as a function of time for two representativ
values ofa. For largea, both values ofK result in strong
saturation withK511 having a higher saturation value tha
K* 56.905. However, with decreasinga the enhanced diffu-
sion for K* 56.905 becomes evident and there is a slo
down in growth in lieu of saturation~over the time consid-
ered!. By contrast,K511 appears to saturate at a val
which is about an order of magnitude lower. This differen
is considerably larger than estimates based on quasili
analysis. The inset in Fig. 2 verifies the existence of pow
law behavior in^p2& for longer timesat K* as compared
with saturation atK511. Note that the slope points to sub
diffusive rather than to superdiffusive growth for which w
have no clear explanation at present.

A stronger signature appears on considering the varia
of localization lengthj with K. It was shown@11# that j
tracks the variations in the classical diffusion coefficientD
when plotted with respect toKq5K sin(\/2)/(\/2), an im-
portant correction at larger\. Figure 4 shows the variation in
j, normalized to the quasilinear estimate, with respect toKq .
j is obtained by fitting an exponential to the time-depend
wave function for long times. The peaks in the inset coinc
with the classical accelerator modes atK52p and 4p andj
computed at different times reflect the same features.
detailed scan displays a reasonable correspondence wit

FIG. 3. Variation of^p2& ~normalized to the saturation valu
Dqlt* ) with the number of kickst. Two representative values ofa,
one large (Q,a'0.61803399) and the other small (SC,a
'0.042340526), are shown forK511 ~dashed lines! and K*
56.905 ~solid lines!. Note that the largera value was time-
averaged to remove fluctuations that mask the trends. The i
shows a log-log plot~at longer times,'5000 kicks! for a
50.042340526,K* 56.905 ~upper curve!, and K511.0 ~lower
curve!. The corresponding slopes are 0.21~solid line! and 0.06
~dashed line! respectively.
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results shown in Fig. 1, despite being far from the semic
sical limit. It should be noted that the highest value occurs
Kq'Kc defined earlier.

We now consider the localized wave function when t
classical transport is predominantly anomalous. Figure
shows the evolved momentum distribution averaged o
600 kicks. Panel~a! corresponds toKq at a peak in Fig. 4
while ~b! sits in the valley. Localization does occur thoug

FIG. 4. Oscillations in the localization lengthj normalized to
the quasilinear estimate as a function ofKq . a'0.131267463
which makes the corrections to the classical stochasticity param
K significant. The inset shows peaks associated with the accele
modes while the main figure zooms in on the region considere
Fig. 1. The inset also showsj computed after 3000 kicks~points! as
well as 9000~line! kicks. Note that the wave function averaged ov
600 kicks is used to determinej.

FIG. 5. Line shapes after 6000 kicks starting from a plane w
initial condition.~a! corresponds toKq'Kc56.90845••• while ~b!
corresponds toKq510.69. a'0.131267463 and the noise in th
line shapes was reduced by averaging over 600 kicks.
-
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the characteristic line shape is strongly nonexponential
Kq in the neighborhood of the peaks. The contrast with
clearly exponential line shape shown in~b! is striking. The
central region in~a! also displays curvature and an expone
tial fit yields aj which is considerably larger than the qu
silinear prediction. However, in case~b!, the computedj is
well approximated by the quasilinear estimate. Moving aw
from the peak inKq decreases the prominence of theshoul-
ders in the line shape. The shoulders develop over a ti
~which depends on\) which is consistent with the crossove
time from exponential to power-law behavior in Fig. 1.

Arguments for deviations of the localization length fro
the simple estimates proceed from the long-time avera
momentum distribution̂ f n&5(mucm(n0)u2ucm(n)u2, start-
ing from a plane waven5n0 initial condition.cm(n) is the
plane wave representation of the eigenfunction with quas
ergy vm . The analysis of localization assumes that
quasienergy states are exponentially localized and that
fluctuations inj are small. If this were true in the case o
anomalous transport, the oscillations in Fig. 4 should direc
correlate with the number of quasienergy states participa
in the dynamics. To address this view, we computed
participation ratioPr from the time averaged autocorrelatio
function

Pr5 lim
T→`

1

T
z^c~T!uc~0!& z2. ~2!

As seen from Fig. 6, the only correlation with Fig. 4 occu
in the valley where the line shape is exponentially localiz
At the peaks, these results strongly support the idea
anomalous transport results in strong fluctuations inj among
the individual quasienergy states. This was verified by c
structing the ‘‘entire’’ spectrum ofU under conditions nec-
essary for dynamical localization. The average value oj

ter
tor
in

e

FIG. 6. Participation ratio as a function ofKq . Time averages of
the autocorrelation function over 1000~points! and 6000~line! kicks
are shown.a'0.131267463.
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does not reflect the large changes inD though the dispersion
Dj exhibits large fluctuations. This view is being explor
further at present.

Theoretically, the classical flights of arbitrary length r
sult ~for the standard map! from a hierarchy of boundary
layer islands@6#. The island areaSn , associated periodTn

and Lyapunov exponentGn scale asSn5lS
nS0 , Tn5lT

nT0,
and Gn5lG

nG0 with the generationn of the island chain.
lS,1, lT.1, andlG'1/lT .

Quantum flights are possible as long asSn>\ leading to
a critical valuen\5u ln \/S0u/uln lSu. The corresponding time
is T\5T0(S0 /\)1/m, wherem5u ln lSu/ln lTu.1 is a classical
transport exponent@6#. We generalize the break timet\ de-
fined earlier to ln(I/\)/Gn where I was some characteristi
action. The longest time corresponds to the smallestGn
5G\51/T\ from which

t\5T\ ln~ I /\!5T0~S0 /\!1/m ln~ I /\!. ~3!

The result points to power-law dependence on\ as well as a
possible crossover in scaling behavior. Note thatT\ for
flights is a pure quantum effect, necessary for localizati
which cannot occur if arbitrarily long flights exist with hig
r-
.

e
n

k

,

probability ~not exponentially small!. Theoretical estimates
are considerably harder when\.S0.

The issue of fluctuations inj is relevant to an atom optic
realization of the kicked pendulum@12#. Here, the localiza-
tion properties are similar to those in the quantum stand
map, though small islands persist in the classical dynam
As we have illustrated, this could lead to strong fluctuatio
in the localized wave function. More recent experimen
have realized thed-kicked rotor system@13# where the mea-
surement of diffusion, over time scales longer than tho
predicted earlier, can provide direct evidence of any anom
lous transport. We note that signatures of anomalous tra
port are similar to those resulting from external noise. T
may be especially relevant in the weak noise limit and w
be considered in detail elsewhere.
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